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Abstract
We study intertwining relations, supersymmetry and Darboux transformations
for generalized Schrödinger equations in (1+1) dimensions. We obtain
intertwiners in an explicit form by means of which we construct arbitrary-
order Darboux transformations for our class of equations. We develop
a corresponding supersymmetric formulation and prove equivalence of the
Darboux transformations with the supersymmetry formalism. Finally, we show
that our Darboux transformations can also be constructed by means of point
transformations, avoiding the use of intertwiners.

PACS numbers: 03.65.Ge, 03.65.Fd, 73.63 Hs

1. Introduction

The Darboux transformation is a method for solving differential equations which has become
popular especially in quantum mechanics, where it is also known as a supersymmetric
factorization method. Mathematically, the Darboux transformation is a linear differential
operator that maps solutions of a differential equation onto solutions of another differential
equation. Typically, these equations are of a similar form, but differ in a nonconstant parameter
only, such as in the case of two Schrödinger equations that are the same up to their potential.
While in principle the Darboux transformation works similarly to Lie symmetry methods,
its structure is essentially different, as it does not involve any change of coordinates. Since
originally [1] the Darboux transformation was constructed for ordinary differential equations
only, in the context of quantum mechanics it was found to be applicable to the stationary
Schrödinger equation [2]. Much later it was found that the Darboux transformation is
equivalent to the supersymmetry formalism, see the reviews in [3, 4]. Darboux transformations
have been constructed for a variety of linear and nonlinear equations [5, 6]. In fact, here all
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classical nonlinear equations are considered, such as the nonlinear Schrödinger equation, the
Korteweg–de Vries equation, the sine-Gordon equation and many more. Among the linear
equations to which the Darboux transformations are applicable, there is a class of linear
generalizations of the Schrödinger equation such as the Schrödinger equations with position-
dependent mass [7–10], Schrödinger equations with weighted energy [11] and generalized
Schrödinger equations with position-dependent mass and weighted energy [12]. All the
above-mentioned cases are related to time-independent Hamiltonians. As is well known,
everything in nature changes in time and scientists need to know how physical processes
evolve with time.

In recent years, great interest has been arisen in developing Darboux transformations
for time-dependent Schrödinger equations [5, 13–16]. As far as we know the first attempts
to construct the Darboux transformations were made in [5]. These considerations can be
seen as special cases of a certain generalized, nonstationary equation of Schrödinger-type,
which admits a generalized Darboux transformation that we constructed explicitly in a recent
paper [17]. This construction of ours left two important questions open, the answers to
which will be our focus in the present paper. The first open question concerns the relation
between our Darboux transformation and a possible supersymmetry formalism. It is well
known that the conventional Schrödinger equation and its self-adjoint generalizations (e.g. the
position-dependent mass equation) allow a supersymmetric formulation, which is equivalent
to their respective Darboux transformation. However, in the case of our generalized, time-
dependent equation this is not clear at all. The second question concerns the method of
construction that we applied in [17]: in contrast to the common approach for constructing
the Darboux transformations, we did not use intertwining relations, but instead made use of
point-canonical transformations. Thus, the question remains whether our generalized Darboux
transformations could also be obtained by evaluating intertwining relations and in what way
the two construction methods—with and without intertwining relations—are related. Both of
these questions will be answered in the present work.

The paper is organized as follows. In the following section, we evaluate the intertwining
relation for the first-order Darboux transformation and derive the intertwiner, as well as the
transformed potential. Section 3 is devoted to the reality condition which guarantees that the
transformed potential is a real-valued function. In section 4, we develop the supersymmetry
formalism for our generalized Schrödinger equation and show its equivalence with the
generalized Darboux transformation. Section 5 is devoted to the higher order Darboux
transformations which we construct by evaluating the corresponding intertwining relation.
Furthermore, we will show that the two construction methods—using intertwining relations
and point-canonical transformations—are equivalent and therefore lead to the same results.
Finally, in section 6, we give an explicit example in order to illustrate our method.

2. First-order Darboux transformation

Consider the following generalized, time-dependent Schrödinger equation in (1+1) dimensions
and units h̄2/2 = 1:

ihψt = −
[
∂x

(
1

m

)
∂x

]
ψ + vψ, (1)

where the index and the symbol ∂ denote the partial differentiation, m = m(x, t) stands for the
particle’s effective mass, h = h(x, t) and v = v(x, t) denote the potentials, and ψ = ψ(x, t)

is the solution. This equation can be rewritten as

2



J. Phys. A: Math. Theor. 42 (2009) 295203 A A Suzko and A Schulze-Halberg

iψt = Hψ, H = − 1

h

[
∂x

(
1

m

)
∂x

]
+

v

h
. (2)

Introduce the transformation operator L that acts on the solutions of (1) as follows:

L(i∂t − H) = (i∂t − H̃)L, (3)

where

H̃ = − 1

h

[
∂x

(
1

m

)
∂x

]
+

ṽ

h
. (4)

Equation (3) and the operator L are called the intertwining relation and the intertwiner,
respectively. The operator L transforms any solution ψ of (1) into a solution

ψ̃ = Lψ (5)

of the transformed Schrödinger equation

(i∂t − H̃)ψ̃ = 0. (6)

We search for the intertwiner in the form of a linear, first-order differential operator

L = A + B∂x, (7)

where A = A(x, t) and B = B(x, t) are to be determined, such that L satisfies (3). By
substituting (7) and the explicit form of the Hamiltonians H and H̃ into the intertwining
relation (3) and applying it to the solution ψ of (1), we get

L
[

i∂t +
1

hm
∂xx +

1

h

(
1

m

)
x

∂x − v

h

]
ψ =

[
i∂t +

1

hm
∂xx +

1

h

(
1

m

)
x

∂x − ṽ

h

]
Lψ.

Assuming linear independence of ψ and its partial derivatives, we collect their respective
coefficients and equal them to zero. This leads to the following system of equations for the
functions A,B and ṽ:

2

hm
Bx =

(
1

hm

)
x

B, (8)

iBt +
2

hm
Ax +

1

hm
Bxx +

1

h

(
1

m

)
x

Bx − B

[
1

h

(
1

m

)
x

]
x

= 1

h
(̃v − v)B, (9)

iAt +
1

hm
Axx +

(v

h

)
x
B +

1

h

(
1

m

)
x

Ax = 1

h
(̃v − v)A. (10)

Condition (8) determines B:

2Bx

B
= − (hm)x

hm
� B = β√

hm
, (11)

where β = β(t) is an arbitrary, purely time-dependent constant of integration. Equations (9)
and (10) enable us to determine the potential ṽ and the function A. For this, let us multiply
equation (9) with A and equation (10) with B. Then, the left-hand sides of (9) and (10) become
the same and we can set them equal to each other:

iABt +
2

hm
AAx +

1

hm
ABxx +

1

h

(
1

m

)
x

ABx −
[

1

h

(
1

m

)
x

]
x

AB

−iAtB − 1

hm
AxxB −

(v

h

)
x
B2 − 1

h

(
1

m

)
x

AxB = 0. (12)

3
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We will now solve this equation with respect to A. To this end, we introduce a new auxiliary
function K defined by A = BK . Taking into account (11) and

2Bx

B
= hm

(
1

hm

)
x

,
Bxx

B
= − (hm)xx

2hm
+

3

4

[
(hm)x

hm

]2

,

equation (12) is transformed into an equation for K only:

iKt =
[
− Kx

hm
+

|K|2
hm

− 1

h

(
1

m

)
x

K − v

h

]
x

. (13)

This is a time-dependent Riccati equation that can be linearized and integrated by introducing
a new function U = U(x, t):

K = −Ux

U
. (14)

Assuming that U is twice continuously differentiable, implying Uxt = Utx , we substitute (14)
in (13) and get[

i
Ut

U
+

1

hm

Uxx

U
+

1

h

(
1

m

)
x

Ux

U
− v

h

]
x

= 0. (15)

Clearly, this equation holds if the expression in brackets does not depend on x. We integrate
on both sides and multiply with U :

iUt +
1

hm
Uxx +

1

h

(
1

m

)
x

Ux − v

h
U = CU, (16)

where C = C(t) is a purely time-dependent constant of integration. Equation (16) is identical
to the initial equation (1) for C = 0. However, setting C to zero is not a restriction, since
solutions to (16) with C �= 0 and C = 0 differ from each other only by a purely time-dependent
factor, which cancels out in (14). Once U is given, one can then evaluate the function K via
(14), which in turn determines A by means of A = BK and (11), that is,

A = − β√
hm

log (U)x . (17)

Let us point out here that the notation log (U)x refers to a derivative of the logarithm and not
only to a derivative of its argument. Having found A from (12), one can get the equation for
the new potential ṽ by solving (9) for ṽ:

ṽ = v +
Bxx

mB
+

2Ax

mB
+

(
1

m

)
x

Bx

B
− h

[
1

h

(
1

m

)
x

]
x

+ ih
Bt

B
. (18)

By insertion of expressions (11) and (17) for B and A, respectively, we obtain the explicit
form of the transformed potential (18). Furthermore, we can construct the intertwiner L and
the transformed solution ψ̃ from (7) and (5), respectively:

ṽ = v + ih

[
βt

β
− 1

2
log (hm)t

]
− 2

√
h

m

[
(u1)x

u1

√
hm

]
x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

, (19)

L = β√
hm

(∂x + K) = β√
hm

[∂x − log(U)x], (20)

ψ̃ = Lψ = β√
hm

[∂x − log(U)x]ψ. (21)

4
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The transformation function U defines the transformation operator L, the new potential ṽ and
the corresponding solutions ψ̃ . The new potential depends not only on the potential v, but also
on the additional potentials m and h. The form of the Darboux operator and of the transformed
potential as given above coincides with our previous results [17], which were obtained without
making use of the intertwining relations, but by means of point canonical transformations. In
other words, the results of this section show that both construction methods are equivalent.
We will prove in section 4 that this also holds for the higher order Darboux transformations.

3. Reality condition

Let us find out conditions under which the constructed potential ṽ will be real if the initial
potentials v, h and m are real. To this end, we take the transformed potential ṽ in its form
(19) and extract its imaginary part. Since the function β can be complex and appears within
a logarithm in (19), let us first determine its real and imaginary parts. Write β in polar
coordinates as

β = β1 exp (iβ2) ,

where β1 = β1(t) and β2 = β2(t) denote the absolute value and the argument of β, respectively.
We obtain

log(β)t = βt

β

= (β1 exp (iβ2))t

β1 exp (iβ2)
(22)

= log(β1)t + i(β2)t .

Thus, extracting the imaginary part of the transformed potential (19) gives

Im(̃v) = h

[
log(β1)t − 1

2
log(hm)t

]
+ 2

√
h

m

[
Im(K)√

hm

]
x

.

If this expression vanishes, then the transformed potential ṽ is real valued, that is

log(β1)t = 1

2
log(hm)t − 2

√
1

hm

[
Im(K)√

hm

]
x

.

On employing definition (14) of the function K, we obtain

log(β1)t = 1

2
log(hm)t + 2

√
1

hm

[
Im

(Ux

U
)

√
hm

]
x

= 1

2
log(hm)t + 2

√
1

hm

[
Im (log(U)x)√

hm

]
x

= 1

2
log(hm)t − i

√
1

hm

[
log(U)x − log(U∗)x√

hm

]
x

= 1

2
log(hm)t − i

√
1

hm

[√
1

hm
log

(
U
U∗

)
x

]
x

. (23)

This is the reality condition for our transformed potential (19). In the conventional case, where
h and m are constants, condition (23) becomes

log(β1)t = − i

hm
log

(
U
U∗

)
xx

.

5
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This is fulfilled if the right-hand side does not depend on x, that is if

log

(
U
U∗

)
xxx

= 0,

which coincides with the findings in [13]. We can solve (23) for the function β1, giving

β1 =
√

hm exp

[
−i

∫ √
1

hm

[√
1

hm
log

(
U
U∗

)
x

]
x

dt

]
. (24)

Note that the left-hand side of this equality does not depend on x, while the right-hand side
does. This means that condition (24) cannot always be fulfilled, except if its right-hand side
is purely time dependent. Now suppose that the reality condition (23) or, equivalently, (24)
is fulfilled. We substitute into the transformed potential (19), which then takes the following
form:

ṽ = v − h(β2)t + 2

√
h

m

[
Re(K)√

hm

]
x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

= v − h(β2)t − 2

√
h

m

[
Re

(Ux

U
)

√
hm

]
x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

= v − h(β2)t − 2

√
h

m

[
Re (log (U)x)√

hm

]
x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

= v − h(β2)t −
√

h

m

[
log (U)x + log (U∗)x√

hm

]
x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

= v − h(β2)t −
√

h

m

[
1√
hm

log(|U |2)x
]

x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

. (25)

This expression is clearly real valued and compatible with the conventional case, where h and
m are constants: we get for the transformed potential (25)

ṽ = v − h(β2)t − 1

m
log(|U |2)xx,

which coincides with the result obtained in [13], if we set the arbitrary phase β2 to zero.

4. Supersymmetry

We will now develop the formalism of supersymmetry for our generalized Schrödinger
equation (1) and show that this formalism is equivalent to the Darboux transformation. To this
end, define the operation of conjugation as follows: (AB)+ = B+A+ with respect to which the
Schrödinger operator i∂t − H is self-adjoint

(i∂t − H)+ = i∂t − H.

On taking the adjoint on both sides of the intertwining relation (3), we obtain

(i∂t − H)L+ = L+(i∂t − H̃). (26)

The operator L+ adjoint to L, as given in (20), is determined as

L+ =
[

1√
hm

(
−∂x + K+

)
− 1

h
∂x

√
h

m

]
β+. (27)

6
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Now, let ψ and ψ̃ be the solutions to the Schrödinger equations associated with the operators
i∂t − H and i∂t − H̃, respectively (recall definition (4) of H̃). These Schrödinger equations
can then be written as one single matrix equation in the form[(

i∂t 0
0 i∂t

)
−

(
H 0
0 H̃

)] (
ψ

ψ̃

)
= 0. (28)

On defining Hm = diag(H, H̃) and � = (ψ, ψ̃)T , the above matrix time-dependent
Schrödinger equation (28) can be written as

[i∂t − Hm]� = 0. (29)

Similar to the case of the constant mass [14], we now define two supercharge operators Q,Q+

as follows:

Q =
(

0 0
L 0

)
, Q+ =

(
0 L+

0 0

)
, (30)

where L and L+ are the operators given by (20) and (27), respectively. One can show that the
matrix Hamiltonian Hm, as given in (29), satisfies the following conditions:⎧⎨⎩

{Q,Q} = {Q+,Q+} = 0
[Q, i∂t − Hm] = [i∂t − Hm,Q] = 0
[i∂t − Hm,Q+] = [Q+, i∂t − Hm]

⎫⎬⎭ , (31)

where {·, ·} and [·, ·] are the anticommutator and commutator, respectively. The first line of
the latter set is trivially fulfilled, because the matrices in (30) are nilpotent. The conditions
in the second and third lines of (31) are precisely our intertwining relations (3) and (26).
Now, let us consider the complementing relations of the supersymmetric algebra, that is the
anticommutators {Q,Q+} and {Q+,Q}. For this, we calculate the operators G = L+L and
G̃ = LL+, and consider the connections of them with our Hamiltonians H and H̃. By using
(20) and (27), we arrive after some algebraic transformations at

G = L+L = |β|2
[
− 1

hm
∂xx − 1

h

(
1

m

)
x

∂x +
1

hm
(|K|2 − Kx) − 1

h

(
1

m

)
x

K

]
, (32)

G̃ = LL+ = |β|2
{

− 1

hm
∂xx − 1

h

(
1

m

)
x

∂x +
1

hm
(|K|2 + Kx) +

1

m

(
1

h

)
x

K

− 1√
hm

[
1

h

(√
h

m

)
x

]
x

}
. (33)

The difference of the last two expressions yields

G̃ − G = 2|β|2
√

1

hm

(
K√
mh

)
x

− |β|2
√

1

hm

[
1

h

(√
h

m

)
x

]
x

. (34)

Next, we consider the diagonal matrix G = diag(G, G̃), which is a symmetry operator of our
matrix equation (29). Note that in the stationary case the diagonal components of G can be
the Hamiltonians H and H̃, for details see [13]. The supercharges Q,Q+ and the symmetry
operator G generate the simplest superalgebra that can be written in a standard form

Q2 = (Q+)2 = 0, [Q,G] = [Q+,G] = 0, {Q,Q+} = {Q+,Q} = G. (35)

It is useful to compare relations (31) and (35). The first equations in (31) and (35) coincide.
The intertwining relations are different. They are standard for the operators G and G̃, that is

G̃L − LG = 0, GL+ − L+G̃ = 0.

7
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But the intertwining relations for the operators H and H̃ are nonstandard. From (3) and (26)
it follows

H̃L − LH = iLt − iB∂xt , L+H̃ − HL+ = −iL+
t + iB∗∂xt . (36)

By comparing the intertwining relations for the elements of Hm and G and by taking into
account the third equation of (35), one can deduce the connection between operators G and
Hm as follows. Let λ1 = λ1(x, t) and λ2 = λ2(x, t) be the functions that are to be determined
and define � = diag(λ1, λ2). Then

G =
(

G 0
0 G̃

)
=

(
H − λ1 0

0 H̃ − λ2

)
= Hm − �, (37)

where we take |β|2 = 1. In components, the latter equality reads

H = G + λ1 = L+L + λ1, (38)

H̃ = G̃ + λ2 = LL+ + λ2, (39)

and in an equivalent form

Hm = {Q+,Q} + �. (40)

We now determine the function λ1. To this end, note that using (13), (14) and (16) we can
express v/h in the form

v

h
= 1

hm
(|K|2 − Kx) − 1

h

(
1

m

)
x

K + i
Ut

U
− C. (41)

Recall that C = C(t) is an arbitrary function that appeared as a constant of integration in (16).
We now find λ1 from (38) by substitution of (32) and comparison with (41):

λ1 = i
Ut

U
− C.

It remains to determine the function λ2 that appeared in (37). We find this function from the
potential difference (19), which after the substitution of (41) takes the following form:

ṽ

h
= 1

hm
(|K|2 + Kx) +

1

m

(
1

h

)
x

K − 1√
hm

[
1

h

(√
h

m

)
x

]
x

+ λ1 + i
Bt

B
. (42)

Similar to the case of λ1, we substitute (33) into (39) and obtain

λ2 = λ1 + i
Bt

B
.

This means that two Hamiltonians H and H̃ can be factorized as is given in (38) and (39) or
in the form (40), supplementing the supersymmetric relations (31) for the generalized time-
dependent Hamiltonian. The fact that the factorization matrix � depends on spatial and time
variables through the functions U = U(x, t) and B = B(x, t) is nonstandard. In a particular
case, when the potentials m and h do not depend on time, � can be written as � = λ1I , where
I is the identity matrix. Moreover, if the transformation function U can be presented in a
factorized form like U(x, t) = F(x)S(t), then λ1 becomes independent of the spatial variable.

Note that as soon as the initial Hamiltonian H is presented in the factorized form (38),
one can obtain its supersymmetric partner in a factorized form too. Indeed, multiplying
equation (38) from the left by L and taking into account the first intertwining relation from
(36), we get

LHψ = L(L+L + λ1)ψ = H̃Lψ + iBψtx − iLtψ. (43)

8
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This enables us to express H̃ in terms of L and L+. Let us calculate

iLtψ = iBt(∂x + K)ψ + iB(∂x + K)tψ = i
Bt

B
Lψ + B

(
i∂t − i

Ut

U

)
x

ψ = i
Bt

B
Lψ.

In the last step, we took into account that iψt = Hψ and iUt /U = H. Now, we compute

Lλ1ψ = B(∂x + K)λ1ψ = B(λ1)xψ + λ1Lψ.

Using the last equations in (43) and taking into account that

iB(λ1)xψ − iBψtx = B

(
i
Ut

U
ψ − iψt

)
x

= 0,

we arrive at

H̃ = LL+ + i
Bt

B
+ λ1 (44)

that coincides with (39).
In summary, we obtained the explicit forms of the supersymmetric partner Hamiltonians

H and H̃. Hamiltonians (38) and (39) are compatible with their definitions (2) and (4),
respectively, if |β|2 = 1 and if the transformed potentials v and ṽ are given by (41) and
(42). Finally, taking the difference of the factorized Hamiltonians (38) and (39) gives the
potential difference (19) that we obtained for our Darboux transformation. Hence, the Darboux
transformation is equivalent to the supersymmetry formalism.

5. Higher order Darboux transformation

In this section, we will derive nth-order Darboux transformations for the generalized
Schrödinger equation (1). In contrast to our former work [17], here we will use intertwiners for
the construction of the Darboux transformation. It will then turn out that our former method—
construction via point canonical transformations—is equivalent to solving the intertwining
relation. In principle, one would have to go back to an intertwining relation (3) with generalized
Hamiltonians (2), (4), and solve it for an nth-order differential operator L, which would imply
large and involved calculations. Here, we will pursue a different approach for solving the
intertwining relation. We start from the conventional Schrödinger Darboux transformation
and its well-known intertwining relation, which—by means of a point transformation—we
take into an intertwining relation for the generalized case. The construction of our nth-order
Darboux transformations will be done in several steps.

General setting. We consider the two generalized Schrödinger equations

iψt = Hψ, iψ̃t = H̃ψ̃,

where the Hamiltonians H and H̃ are given in (2) and (4), respectively, and ψ = ψ(x, t), ψ̃ =
ψ̃(x, t) stand for the solutions. We seek an intertwiner Ln that satisfies the intertwining
relation

Ln(i∂t − H) = (i∂t − H̃)Ln, (45)

and we require this intertwiner to be a linear differential operator of order n > 1, that is

Ln =
n∑

j=0

Aj

∂j

∂xj
.

Our task is to determine the functions Aj = Aj(x, t) such that the latter operator
satisfies (45).

9
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The conventional case. Let us consider two conventional Schrödinger equations

iφt = Hφ, H = −∂xx + w, (46)

ĩφt = H̃ φ̃, H̃ = −∂xx + w̃, (47)

where w = w(x, t) and w̃ = w̃(x, t) stand for the potentials. As was shown in [13], there is
an intertwiner Ln of order n, satisfying the intertwining relation

Ln(i∂t − H) = (i∂t − H̃ )Ln. (48)

This intertwiner Ln can be given in an explicit form. To this end, let v1, v2, . . . , vn be the
solutions of the Schrödinger equation (46), such that the family (v1, v2, . . . , vn, φ) is linearly
independent. Then the operator Ln satisfying (48) is given explicitly by

Ln(·) = β
Wn+1,(vj )(·)

Wn,(vj )

, (49)

where β = β(t) is arbitrary, Wn+1,(vj ) and Wn,(vj ) stand for the Wronskians of the families
(v1, v2, . . . , vn, ·) and (v1, v2, . . . , vn), respectively. Finally, if the potentials w and w̃ in
Hamiltonians (46) and (47) satisfy

w̃ = w + i
βt

β
− 2 log

(
Wn,(vj )

)
xx

, (50)

then L is an intertwiner.

The point transformation. We now establish a connection between the conventional
Schrödinger equation and its generalized counterpart (1), which we apply the following point
transformation to:

ψ(x, t) = exp[F(x, t)]	[u(x, t), s(t)], (51)

introducing a function F = F(x, t) and new coordinates u = u(x, t), s = s(t). This
transformation converts the generalized Schrödinger equation to

i	s +

(
u2

x

sthm

)
	uu +

1

sth

(
2
Fxux

m
− mxux

2m2
+

uxx

m
+ ihut

)
	u

+
1

sth

(
iFth +

F 2
x

m
+ Fxx − Fxmx

m2
− V

)
	 = 0. (52)

Here st denotes the derivative of s, note that s must not depend on x in order to preserve the
linearity of the equation. Now we convert (52) into a conventional Schrödinger equation by
requiring that the coefficient of 	uu is equal to 1 and that the coefficient of 	u vanishes:

u2
x

sthm
= 1, 2

Fxux

m
+ gux +

uxx

m
+ ihut = 0.

These conditions can be solved for the free parameters u and F of our point transformation
(51):

u = √
st

∫ √
hm dx, (53)

F = −
∫ (

i
hmut

2ux

− mx

2m
+

uxx

2ux

)
dx. (54)

10
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The new coordinate s remains arbitrary. Now, on plugging the settings (53) and (54) into
equation (52), we obtain

i	s + 	uu +
1

sth

(
iFth +

F 2
x

m
+ Fxx − Fxmx

m2
− V

)
	 = 0, (55)

where the explicit form of F is given in (54). Note that the coefficient of 	 in (55) is still
written in the old coordinates x and t.

Transformation of the intertwining relation. Consider now the conventional intertwining
relation (48) for the intertwiner Ln and potential difference as given in (49) and (50),
respectively. This intertwining relation, applied to a solution φ of equation (46), has the
following explicit form:

1

Wn,(vj )

Wn+1,(vj ) [(i∂s + ∂uu − w)φ] = (i∂s + ∂uu − w̃)
Wn+1,(vj )(φ)

Wn,(vj )

, (56)

where w̃ is given in (50). Note that we used the variables u and s instead of x and t, which
will prove useful for the following reason: both sides of relation (56) contain a Schrödinger
operator, corresponding to the conventional Schrödinger equations (46) and (47), respectively.
Those equations are related to the generalized Schrödinger equations of the form (1) by means
of the point transformation (51), (53) and (54). Thus, this point transformation connects the
intertwining relation (56) with an intertwining relation that corresponds to the generalized
Schrödinger equations. Let us now obtain this intertwining relation in an explicit form. To
this end, we apply the inverse point transformation (51), (53) and (54) to (56), implying

φ = exp(−F)ψ, (57)

vj = exp(−F)uj , (58)

where u1, u2, . . . , un are the solutions of the generalized Schrödinger equation (1).
Furthermore, the derivatives in (56) need to be rewritten in terms of the variables x and t.
These changes render the Wronskians in the following form [16]:

Wn+1,(vj )(φ) =
(

1

ux

) 1
2 n(n+1)

exp [−(n + 1)F ] Wn+1,(uj )(ψ), (59)

Wn,(uj ) =
(

1

ux

) 1
2 n(n−1)

exp (−nF) Wn,(uj ), (60)

where ux stands for the derivative of the function u as given in (53). On plugging the settings
(57)–(60) into the intertwiner Ln as given in (49), and changing its name to Ln, we obtain

Ln = β

(
1

ux

)n Wn+1,(uj )(·)
Wn,(uj )

= β

(
1

hm

) n
2 Wn+1,(uj )(·)

Wn,(uj )

, (61)

where in the last step we used the explicit form of u as given in (53). The Schrödinger
operators in the intertwining relation (56) change into the generalized Schrödinger operators,
corresponding to equation (1). It therefore remains to determine the potential w and its
transformed counterpart (50) in the generalized Schrödinger equation. Without loss of

11
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generality, we can assume that the potential w in the intertwining relation (56) is given
by

w = − 1

sth

(
iFth +

F 2
x

m
+ Fxx − Fxmx

m2
− V

)
,

where the function F is defined in (54). This implies that the potential v in the generalized
Schrödinger equation (1) reads v = V . According to (50), the transformed potential ṽ in (4)
must then read

ṽ = v + i
βt

β
− 2 log

(
Wn,(vj )

)
uu

.

On employing the settings (57) and (58), and after rewriting the derivative in terms of the
variables x and t, we obtain the following explicit potential difference:

ṽ = v + isth
βt

β
− 2sth

{
log

[
exp(−nF)

(
1

ux

) 1
2 n(n−1)

Wn,(uj )

]}
uu

= v + isth
βt

β
− 2sth

[
−nF +

1

2
n(n − 1) log

(
1

mhst

)
+ log

(
Wn,(uj )

)]
uu

= v + isth
βt

β
− 2

m

[
−nF +

1

2
n(n − 1) log

(
1

mhst

)
+ log

(
Wn,(uj )

)]
xx

+ 2h

(
1

mh

)
x

[
−nF +

1

2
n(n − 1) log

(
1

mhst

)
+ log

(
Wn,(uj )

)]
x

. (62)

We omit to substitute the explicit form of F as given in (54), since the resulting expression
would become long and involved. We have now transformed the conventional intertwining
relation (48) into a new intertwining relation for the generalized Schrödinger equation. This
new relation has the following explicit form:

Ln(i∂t − H) = (i∂t − H̃)Ln. (63)

Here, Ln is the nth-order intertwiner given in (61). Furthermore, the Hamiltonians H and H̃
are given in (2) and (4), respectively, and the difference between their potentials v and ṽ is
displayed in (62). The intertwining relation (63) is satisfied, as it was constructed from the
well-known, conventional intertwining relation. Hence, we have shown that the higher order
Darboux transformations for the generalized Schrödinger equation (1) can be constructed by
means of intertwining relations, just as in the conventional case. Furthermore, since the explicit
form of our Darboux transformation (61) and of the transformed potential (62) coincide with
our previous results [17], it follows that both methods of construction—using point canonical
transformations and intertwining relations—are equivalent.

The first-order case revisited. Note that in the first-order case our intertwining relation (63)
must reduce to our former intertwining relation (3), where the intertwiner and the potential
difference are given in (20) and (19), respectively. Let us now verify this, starting with the
intertwiner (61) for n = 1. On evaluating (61), we get

L1 = β

√
1

hm

(
1

u1

)
det

(
u1 1

(u1)x ∂x

)
= β

√
1

hm

[
− (u1)x

u1
+ ∂x

]
.

This coincides with (20), if we take into account that K = −(u1)x/u1. Next, let us evaluate
(62) for the case n = 1 and verify compatibility with (19). We get

ṽ = v − isth
βt

β
− 2

m

[
−F + log (u1)

]
xx

+ 2h

(
1

mh

)
x

[
−F + log (u1)

]
x

.
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Inserting (54), setting s(t) = t and simplifying gives the following result:

ṽ = v − ih

(
ht

2h
+

mt

2m
− βt

β

)
+

3h2
x

4h2m
− 3m2

x

4m3
+

mx(u1)x

m2u1
+

2(u1)
2
x

mu2
1

− hxx

2hm

+
mxx

2m2
− 2(u1)xx

hmu1
.

This can be written in the form

ṽ = v + ih

[
βt

β
− 1

2
log (hm)t

]
− 2

√
h

m

[
(u1)x

u1

√
hm

]
x

−
√

h

m

[
1

h

(√
h

m

)
x

]
x

,

and coincides with our result (19) if we take into account that K = −(u1)x/u1.

6. Application

Let us now give a simple application of our formalism that shows how our Darboux
transformation can be applied in a concrete case. To this end, we consider a generalized
Schrödinger equation (1) of the following type:

ihψt = −ψxx + vψ, (64)

that is for a constant mass m = 1. The weight h = h(x, t) and the potential v = v(x) are
chosen as follows:

h = p

αx
, (65)

v = p

x
− q2, (66)

where q and p are the real and positive constants, and α = α(t) is an arbitrary function. A
particular solution of (64) for the settings (65) and (66) is given by

ψ = sin(qx) exp

(
−i

∫
α dt

)
. (67)

We will now perform the first-order Darboux transformation (20) on this function, taking as
an auxiliary solution u1 the function

u1 = cos(qx) exp

(
−i

∫
α dt

)
. (68)

Clearly, the two solutions (67) and (68) are linearly independent, as required for the Darboux
transformation. After insertion of m = 1 and the functions (67), (68) into (20) and (19), we
get the following results (note that K = −(u1)x/u1):

ψ̃ = Lψ =
√

α

p
x

βq

cos(qx)
exp

(
−i

∫
α dt

)
ṽ = p

x
− q2 +

ip

αx

(
β ′

β
− ht

2h

)
+ 2

√
h

(
K√
h

)
x

−
√

h

[
(
√

h)x

h

]
x

= p

x
− q2 − 1

4x2
+

ip

αx

(
β ′

β
+

α′

2α

)
+ 2

q2

cos2(qx)
+

q

x
tan(qx). (69)

If we take β = 1/
√

α then the imaginary part of the transformed potential becomes zero. In
fact, this is the simplest way to obtain a real-valued potential:

ṽ = p

x
− q2 − 1

4x2
+ 2

q2

cos2(qx)
+

q

x
tan(qx). (70)

13



J. Phys. A: Math. Theor. 42 (2009) 295203 A A Suzko and A Schulze-Halberg

This potential is stationary, as its initial counterpart v in (66). However, if we want the
transformed potential (70) to be time dependent, then we need β �= 1/

√
α, since the time-

dependent terms are in the potential’s imaginary part. Finally, if we want the transformed
potential (70) to be time dependent and real valued, then we need to set

β = exp

[
i
∫ (

γ − α′

2α

)
dt

]
,

introducing a function γ = γ (t), which renders the transformed potential (70) in the form

ṽ = p

x
− q2 − 1

4x2
+ 2

q2

cos2(qx)
+

q

x
tan(qx) − pγ

αx
.

The fact that β has now turned complex does not matter, since it appears only in the transformed
solution (69).

7. Concluding remarks

We have performed a thorough study of intertwining relations for the generalized Schrödinger
equations of the form (1), which lead to the construction of arbitrary-order Darboux
transformations and to a supersymmetry formulation. Both of the latter formalisms include
all known special cases, e.g. for position-dependent mass [10] or for weighted energy [11].
Finally, we confirmed that constructing Darboux transformations via intertwining relations
gives the same result as constructing them by means of point canonical transformations, as
done in our previous paper [17].
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